

Global Journal of Fisheries Science

Volume 3(4), pages 37-43, October 2021 Article Number: 406B1F621

ISSN: 2782-750X

https://doi.org/10.31248/GJFS2021.027 https://integrityresjournals.org/journal/GJFS

Full Length Research

Length-weight relationship and condition factor of Labeo niloticus, Synodontis schall and Auchenoglanis occidentalis, in Upper Atbara and Setit Dam Complex, Gadarif State, Sudan

Hozifa Adam Suliman Adam1* and Ahmed El-Aabid Hamad2

¹Department of Animal Production, Faculty of Veterinary Sciences, University of Gadarif, Sudan.

²Department of Fisheries Sciences and Wildlife, College of Animal Production Science & Technology, Sudan University of Science & Technology, Sudan.

*Corresponding author. Email: adam_hozifa@yahoo.com; Orchid: https://orcid.org/0000-0002-9139-8426.

Copyright © 2021 Adam and Hamad. This article remains permanently open access under the terms of the <u>Creative Commons Attribution License</u>
4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received 20th August, 2021; Accepted 28th September, 2021

ABSTRACT: This study was undertaken to assess the length-weight relationship and condition factor of *Labeo niloticus*; *Synodontis schall* and *Auchenoglanis occidentalis*, in Upper Atbara and Setit Dam Complex, Gadarif State, Sudan from September 2019 to January 2020. Samples of fish were collected monthly for a 5 months period. A total of 1475 specimens of *L. niloticus* (500 samples), *S. schall* (500 samples) and *A. occidentalis* (475 samples). Fish species sampled in the study area had size range of 17 to 37 cm, 11.6 to 30.5 cm and 16.7 to 38.8 cm, for *L. niloticus*, *S. schall* and *A. occidentalis*, respectively. The weight ranged from 88 to 927 g, 49 to 682 g and 94 to 1334 g, for *L. niloticus*, *S. schall* and *A. occidentalis*, respectively. The LWRs for the combined sexes had the (r) values of 0.974, 0.902 and 0.906, respectively. The mean condition factor (K) was 3.121±0.262, 2.902±0.435 and 2.366±0.292 for the combined sexes, respectively. The regression coefficient b was 2.848, 2.619 and 2.823 for the combined sexes, respectively indicating negative allometric growth pattern for all species.

Keywords: Allometric growth, combined sexes, condition factor, fish species.

INTRODUCTION

The main freshwater fisheries in Sudan are located in the River Nile and its tributaries, major dam reservoirs and man-made lakes (FAO, 2014). Sudan is one of the largest countries in Africa with area of 1861500 km² (FAO, 2014).

Because of its high protein content, fish is an essential dietary component. Unfortunately, many fish stocks are plummeting worldwide notably in Mediterranean Sea for example, mainly because of two factors: the overexploitation of certain fish species and the environmental degradation caused, among other things, by pollution (Zhou et al., 2010; Coll et al., 2010). Some quantitative aspects such as length weight relationship (LWR) and condition factor (K) of fishes is an important tool for the study of fishing biology. In fishery assessments and

in fish biology, the LWR is of great importance (Tesfaye and Tadesse, 2008; Dan-Kishiya, 2013).

Several indices are used in assessing the condition of a fish with regard to factors that affect their distribution and abundance, alteration in food, spawning and breeding grounds. Some common indices used to assess fish status are the length-weight, length-length relationship, growth factor and condition factor (Kings, 2007; Mahmood et al., 2012). Length-weight relationship (LWR) of fishes is important in fisheries and fish biology because they allow estimation of the average weight of the fish of a given length group by establishing a mathematical relationship between them (Sarkar et al., 2008; Mir et al., 2012). In length-weigh relationship, fishes can attain either isometric

or allometric, when b = 3, increase in weight is isometric. When the value of b is other than 3, weight increase is allometric (positive if b>3, negative if b<3) (Nehemia et al., 2012; Riedel et al., 2007; Weatherly and Gill, 1987).

The condition factor is a parameter of the state of well-being of fish based on the hypothesis that heavier fish of a particular length is in a better physiological condition (Bagenal, 1978). Also condition factor reflect the interactions between biotic and abiotic factors in the physiological condition of the fishes (Lalrinsanga et al., 2012). Condition factor is also a useful index for monitoring of feeding intensity, age, and growth rates in fish (Ndimele et al., 2010). Condition factor shows the degree of wellbeing of the fish in their habitat and measures the deviation of an organism from the average weight in a given sample. It assesses the suitability of a specific water environment for growth of fish (Yilmaz et al., 2012; Mensah, 2015).

Abdalla et al. (2021) recorded the mean condition factor for *L. niloticus* in Khashm El-Girba Reservoir and Atbara River; Eastern Sudan as 1.671±0.273, 1.953±0.644 and 2.548±0.516 in Um Aswad, El-Remila and El-Monaba sites, respectively. Ahmed et al. (2017) reported a condition factor of *S. schall* in Roseires reservoir to be 0.7018. Therefore, this study intents to investigate the length-weight relationships and condition factors for better management of fisheries resources in the study area.

MATERIALS AND METHODS

Study area

The Upper Atbara and Setit Dam Complex is a twin dam complex comprising Rumela Dam on the Upper Atbarah River and Burdana Dam on the Setit (Tekezé) River in eastern Sudan. It is located on latitude 14°16′36′N and longitude 35°53′49′E (Plate 1). The site of the twin dam is located about 20 kilometres upstream from the junction of the Atbarah and Setit rivers and about 80 kilometres south of the Khashm el-Girba Dam (Wikipedia, 2015).

Rumela Dam on the Atbarah is 55 metres in height and Burdana Dam on the Setit is 50 metres in height. The two dams are connected and have a total length of 13 kilometres. The twin dam complex has a joined reservoir with a storage capacity of about 2.7 billion cubic metres of water. The maximum filling level is 517.5 metres above sea level (Wikipedia, 2015).

Sample collection

A total of 1475 individuals of *L. niloticus* (500 samples), *S. schall* (500 samples) and *A. occidentalis* (475 samples) were randomly sampled monthly for five months, four time a month, 25 samples for each species per week. The fish specimens used for the study were obtained from fishermen operating along Upper Atbara and Setit Dam Complex. These fishermen use various fishing gears

including hooks, traps and a set of multifilament gill nets. The collected fish were identified down to the species level using identification keys published by Sandon (1950), Abu Gideiri (1984) and Bailey (1994).

Morphometric measurements

Total length (TL) of fish was measured to the nearest 0.1 cm from the tip of snout to end of the upper lobe of the caudal fin, and standard length (SL) from the tip of the snout to the flexure between caudal peduncle and caudal fin, using a measuring board. Body weight (BW) was recorded to the nearest 0.1 g using a digital balance (SF-400A). All measurements of the collected samples of *L. niloticus, S. schall*; and *A. occidentalis* were taken at the sampling sites.

Length-weight relationship:

The relationship between length and weight of studied fish species was calculated according to Bagenal and Tesch (1978), using the equation below:

$$W = al^b$$
 ------Eqn. 1

Where: W = total weight, L= standard length, a and b are constants, were estimated by converting the logarithmic linear function (Sparre and Venema, 1992).

(a) and (b) were obtained using least square regression according to Sparre and Venema (1992), where (b) is the regression coefficient.

Excel package was used to plot the curve of the relationship between length and weight, and the values of the constants (a) and (b) for each species were estimated.

Condition factor (FCF)

Condition factor (K) was calculated according to the formula:

$$FCF = \frac{w}{L^b} \times 100$$
 -----Eqn. 3

Where; W = total weight of the fish in grams and L = the standard length of the fish in cm.

The value of (b) usually ranges from 2.5 to 4.0 for mature freshwater fish.

Statistical analysis

Data was analyzed using the statistical package (Past

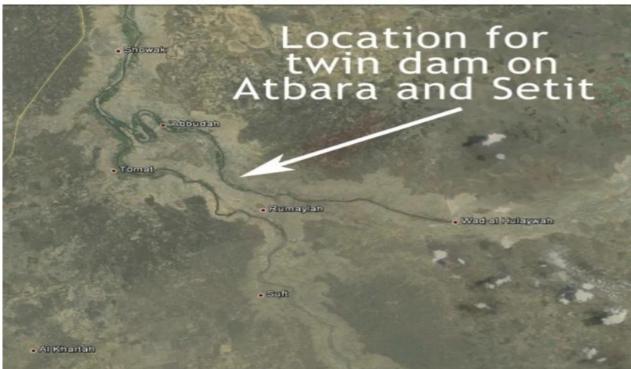


Plate 1. A map of location for twin dam on Atbara and Setit, and the sampling site (source preservethemiddlenile.com, 2012).

statistical package version 3.14) to obtain liner regression and correlation and Microsoft office Excel 2007 to calculate average and standard deviation.

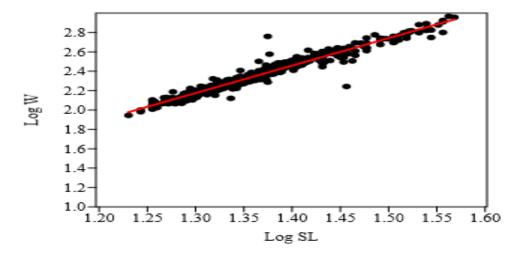
RESULTS

Morphometric measurements

The morphometric measurements showed minimum length of 17.0, 11.6 and 16.7 cm while the maximum length of 37.0, 30.5 and 38.8 cm; with an average value (\pm SD) of 23.557 \pm 3.903, 18.511 \pm 2.377 and 29.367 \pm 3.680 cm for *L*.

niloticus, S. schall and A. occidentalis respectively, as shown in Table 1.

Length-weight relationship


The length-weight relationship (LWR) of *L. niloticus*; *S. schall* and *A. occidentalis*, for the combined sexes had the (r) values of 0.974, 0.902 and 0.906, respectively. The regression coefficient b was 2.848, 2.619 and 2.823 for the combined sexes, respectively indicating negative allometric growth pattern for all species, as shown in Table 2, Figures 1, 2 and 3.

Parameter		L. niloticus	S. schall	A. occidentalis
	Min	17	11.6	16.7
Length	Max	37	30.5	38.8
-	Aver.	23.557 ± 3.903	18.511 ± 2.377	29.367 ±3.680
	Min	88	49	94
Weight	Max	927	682	1334
	Aver.	258.472 ±139.411	189.978 ± 73.362	632.417 ± 203. 714

Table 1. Data observation, minimum, maximum and average of Standard length and weight for all species in the study.

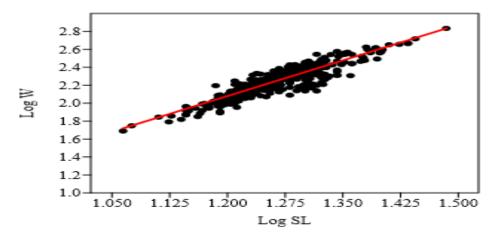
Table 2. Linear fit of length-weight relationship for species of *L. niloticus*, *S. schall* and *A. occidentalis* in Upper Atbara and Setit Dam complex during the study period (2019/2020).

Consider	I W Deletienskin	Facestian.	No.	value		
Species	L-W Relationship	Equation		(a)	(b)	r
L. niloticus	SL - W	Log W= -1.507 + 2.832 Log SL	500	-1.507	2.832	0.975
S. schall	SL - W	Log W=-1.102 + 2.651 Log SL	500	-1.102	2.651	0.907
A. occidentalis	SL - W	Log W= -1.012 + 2.854 Log SL	475	-1.012	2.854	0.871

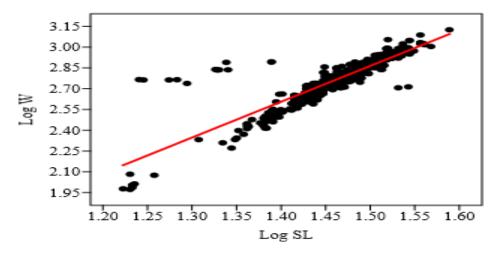
Figure 1. Linear fit of standard length-weight of *L. niloticus* in Upper Atbara and Setit Dam during the study period (2019/2020).

Condition factor of studied fish species

Very high values of condition factor were recorded for *L. niloticus* during study period; value of condition factor fluctuated between 3.048±0.181 and 3.241±0.235, with an average 3.121±0.262, as shown in Table 3.


Values of condition factor recorded for *S. schall* in Upper Atbara and Setit Dam Complex ranged between 3.253±0.293 and 3.253±0.293; while mean value of (K) calculated are 2.902±0.435, as shown in Table 3.

Minimum value of (K) recorded for A. occidentalis in the fishing sites was 2.151±0.162, and the maximum value


was 2.484±0.456; with average value of 2.366±0.292. Generally, very high values of condition factor (> 1.0) were recorded for *S. schall* in Upper Atbara and Setit Dam Complex, as shown in Table 3.

DISCUSSION

Analysis of the regression coefficients obtained indicated negative allometric growth of *L. niloticus*, *S. schall* and *A. occidentalis*, where the slope (b) of the (LWR) was highly significant (p<0.001) and ranged from 2.848, 2.619 and

Figure 2. Linear fit of standard length-weight of *S. schall* in Upper Atbara and Setit Dam during the study period (2019/2020).

Figure 3. Linear fit of standard length-weight of *A. occidentalis* in Upper Atbara and Setit Dam during the study period (2019/2020).

Table 3. Average condition factor for species of *L. niloticus*, *S. schall* and *A. occidentalis* in Upper Atbara and Setit Dam complex during the study period (2019/2020).

Month	L. niloticus	S. schall	A. occidentalis
Sep - 2019	3.096 ± 0.331	2.781 ± 0.347	2.484 ± 0.456
Oct - 2019	3.095 ± 0.281	2.543 ± 0.499	2.337 ± 0.231
Nov - 2019	3.123 ± 0.281	3.098 ± 0.313	2.433 ± 0.150
Dec - 2019	3.241 ± 0.235	3.253 ± 0.293	2.444 ± 0.190
Jan - 2020	3.048 ± 0.181	2.837 ± 0.303	2.151 ± 0.162
Mean	3.121 ± 0.262	2.902 ± 0.435	2.366 ± 0.292

2.823 for the combined sexes respectively. This result agrees with the findings of Abdalla et al. (2021) who recorded negative allometric growth pattern with regression coefficients of 2.178 to 2.885 for *L. niloticus* in Khashm El-Girba reservoir and Atbara River, Sudan. Similarly, several authors who worked on *L. niloticus* from the White Nile, Khashm El-Girba reservoir, Atbara River,

Roseirs Reservoir after heightening of the Dam reported negative allometric growth pattern of this species (Ahmed et al., 2011; Hamid, 2018).

Also, the result in present study for *S. schall* agrees with many authors (Laleye et. al., 2006; Akombo et al., 2014; Ahmed et al., 2017) in Nigeria, Benin, and Roseires reservoir- Sudan. Ikongbeh et al. (2013) recorded negative

allometric growth of both male and female *A. occidentalis* in Lake Akata and Edward (2018) who recorded negative allometric growth also for *A. occidentalis* in Upper River Benue (Nigeria).

The mean condition factor recorded for *L. niloticus*, *S. schall* and *A. occidentalis* in the study area were 3.121±0.262, 2.902±0.435 and 2.366±0.292 for the combined sexes, respectively. Similar studies were carried out on condition factor of *L. niloticus*; *S. schall* and *A. occidentalis*in different inland waters in Sudan and some African rivers. Abdalla et al. (2021) concluded that mean condition factor of *L. niloticus* in Khashm El-Girba Reservoir and Atbara River; Eastern Sudan, ranged between 1.671±0.273, 1.953±0.644 and 2.548±0.516 in Um Aswad, El-Remila and El-Monaba sites respectively. A similar result was obtained by Ahmed et al. (2011) showing that the condition factor (K) of *L. niloticus* ranged from 1.595±0.912 to 2.536±0.070 in Khasm El-Girba reservoir.

On the other hand, Ahmed et al. (2017) reported that the condition factor for *S. schall* in Roseires reservoir was 0.7018. This result disagrees with the result in present study. The marked difference in the high values of condition factor recorded in Upper Atbara and Setit Dam complex and Khashm E-Girba may be due to differences in location of the collection site, sample size, seasonal variation in water temperature, turbidity, photoperiod and food availability in the two freshwater ecosystems.

Akombo et al. (2014) recorded that mean condition factor of *S. schall* in River Benue (Nigeria), fluctuated between 2.838 to 2.874 for female, male and combined sex. While Laleye et al. (2006) reported a mean condition factor of 1.513 for *S. schall* in Oueme River (Benin).

Ikongbeh et al. (2013) reported that the mean condition factor of *A. occidentalis* in Lake Akata, Benue (Nigeria) varied between1.53±0.02; while Edward (2018) reported average value of condition factor of 1.21 for *A. occidentalis*is in Upper River Benue, Nigeria. This result disagrees with the result in present study for *A. occidentalis*is. This may be due to the difference in location of the collection sites, where environmental conditions are different in the Khashm El-Girba reservoir and Upper Atbara and Setit Dam complex.

Conclusion

The result obtained in this study showed general negative allometric growth among the fish species under study (*Labeo niloticus*, *Synodontis schall*; and *Auchenoglanis occidentalis*). Very high values of condition factor (>1.0) were recorded for *Synodontis schall* in all three sampled fishing sites in Upper Atbara and Setit Dam complex.

CONFLICT OF INTEREST

The authors of this paper declare that competing interests do not exist.

ACKNOWLEDGEMENT

The authors appreciate the staff of Department of Fisheries and Aquatic, Gadarif State. Thanks are also due to Mr. Mutasim Youssef, Mr. Yassir Mohamed, Mr. Saddam Sharaf al-Din, Mr. Omar El-nuor, for the unlimited assistance they offered during collection of samples.

REFERENCES

- Abdalla, M. Y. M. Abdelhalim., & A. I. Adam, A. E. (2021). Study of some biological aspects of the Nile Carp, *Labeo niloticus* (Pisces, Cyprinidae) from Khashm El-Girba Reservoir and Atbara River; Eastern Sudan: II, length-weight relationship, condition factor and age structure. *Global Journal of Fisheries Science*, 3(2), 7-14.
- Abu Gideiri, Y. B. (1984). *Fishes of the Sudan.* Khartoum University press, Democratic Republic of Sudan, 122p.
- Ahmed, E. O., Ali, M. E., & Aziz, A. A. (2011). Length-weight relationships and condition factors of six fish species in Atbara River and Khashm El-Girba Reservoir, Sudan. *International Journal of Agriculture Sciences*, 3(1), 65-70.
- Ahmed, E. O., Ali, M. E., Aziz, A. A. & Rafi, E. M., (2017). Length-weight relationships and condition factors of five freshwater fish species in Roseires Reservoir, Sudan. *European Journal of Physical and Agricultural Sciences*, 5(2), 26-33.
- Akombo, P. M., Akange, E. T., Adikwu, I. A., & Araoye, P. A. (2014). Length-weight relationship, condition factor and feeding habits of *Synodontisschall* (Bloch and Schneider, 1801) In river Benue at Makurdi, Nigeria. *International Journal of Fisheries and Aquatic Studies*, 1(3), 42-8.
- Bagenal, T. B., & Tesch, F. W. (1978). Methods of assessment of fish production in fresh waters. IBP Handbook No 3, 3rd edition. Oxford Blackwell Scientific Publication, London. Pp. 101-136.
- Bagenal, T. B., (1978). Aspects of fish fecundity. In: Gerking, S. D (ed.). Methods of assessment of ecology of freshwater fish production. Blackwell Scientific Publications, London. Pp. 75-101.
- Bailey, R. G., (1994). Guide to the fishes of the River Nile in the Republic of the Sudan. *Journal of Natural History*, 28(4), 937-970.
- Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F., Aguzzi, J., Ballesteros, E., Bianchi, C. N., Corbera, J., Dailianis, T., & Voultsiadou, E. (2010). The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. *PloS* one, 5(8), e11842.
- Dan-Kishiya, A. S., (2013). Length-weight relationship and condition factor of five fish species from a tropical water supply reservoir in Abuja, Nigeria. *American Journal of Research Communication*, 1(9), 175-187.
- Edward, A., (2018). Length-weight relationship and condition factor of *Auchenoglanis occidentalis*; *Clarias gariepinus* and *Oreochromis niloticus* in Upper River Benue, Yola, Adamawa State, Nigeria. *Journal of Scientific Research*. 6(1), 65-69.
- Food and Agriculture Organization (FAO) (2014). *The state of world fisheries and aquaculture*. Food and Agriculture Organization, Rome, Italy. 223p.
- Hamid, A. M. A. (2018). Aspects study of some biological of four commercially important fishes in Roseirs Reservoir after heightening of the Dam. Sudan Academy of Sciences Animal Research Council.

- Ikongbeh, O. A., Ogbe, F. G., & Solomon, S. G. (2013). Length-weight relationship and condition factor of *Auchenoglanis occidentalis* (Valenciennes, 1775) from Lake Akata, Benue State, Nigeria. *IOSR Journal of Agriculture and Veterinary Science*, 3(6), 11-17.
- Lalèyè, P., Chikou, A., Gnohossou, P., Vandewalle, P., Philippart, J. C., &Teugels, G. (2006). Studies on the biology of two species of catfish *Synodontis schall* and *Synodontis* nigrita (Ostariophysi: Mochokidae) from the Ouémé River, Bénin. Belgium Journal of Zoology, 136(2), 193-201.
- Lalrinsanga, P. L., Pillai, B. R., Patra, G., Mohanty, S., Naik, N. K., & Sovan, S. (2012). Length weight relationship and condition factor of giant freshwater prawn *Macrobrachium rosenbergii* (De Man, 1879) based on developmental stages, culture stages and sex. *Turkish Journal of Fisheries and Aquatic Sciences*, 12(4), 917-924.
- Mahmood, K., Ayub, Z., Maazzam, M., & Siddiqui, G., (2012). Length-weight relationship and condition factor of llesha melastoma (*Clupeiformes pristigasteridae*) off Pakistan. *Pakistan Journal of Zoology*, 44(1), 71-77.
- Mensah, S. A., (2015). Weight-length models and relative condition factors of nine freshwater fish species from the Yapei Stretch of the White Volta, Ghana. *Elixir Applied Zoology*, 79, 30427-30431.
- Mir, J. I., Shabir, R., Mir, F. A., (2012). Length-weight relationship and condition factor of *Schizopygecurvifrons* (Heckel, 1838) from River Jhelum, Kashmir, India. World Journal of Fish and Marine Sciences, 4(3), 325-329.
- Ndimele, P. E., Kumolu-Johnson, C. A., Aladetohun, N. F., & Ayorinde, O. A. (2010). Length-weight relationship, condition factor and dietary composition of *Sarotherodon melanotheron*, Rüppell, 1852 (Pisces: cichlidae) in Ologe Lagoon, Lagos, Nigeria. *Agriculture and Biology Journal of North America*, 1(4), 584-590.
- Nehemia, A., Maganira, J. D., & Rumisha, C., (2012). Length-weight relationship and condition factor of tilapia species grown in marine and fresh water ponds. *Agriculture and Biology Journal of North America*, 3(3), 117-124.

- Riedel, R., Caskey, L. M., & Hurlbert, S. H., (2007). Length-weight relations and growth rates of dominant fishes of the Salton Sea: Implications for predation by fish-eating birds. *Lake and Reservoir Management*, 23, 528-535.
- Sandon, H., (1950). An illustrated guide to fresh water fishes of the Sudan. Sudan Notes and Records. Mc Corquodal and Co, London, UK. 59p.
- Sarkar, U. K., Deepak, P. K., & Negi, R. S. (2009). Length–weight relationship of clown knifefish Chitala chitala (Hamilton 1822) from the River Ganga basin, India. *Journal of Applied Ichthyology*, 25(2), 232-233.
- Sparre, P., & Venema, S. (1992). *Introduction to tropical fish stock assessment*. Part 1 Manual. FAO Fish. Tech. Pap. 306/1 Rev.1. FAO, Rome, Italy.
- Tesfaye, G., & Tadesse, Z. (2008). Length-weight relationship, Fulton's condition factor and size at first maturity of tilapia, *Oreochromis niloticus* L. in lakes Koka, Ziway and Langano (Ethiopian rift valley). *Ethiopian Journal of Biological Sciences*, 7(2), 139-157.
- Weatherly, A. H., & Gill, H. S., (1987). *The biology of fish growth*. Academic Press, London. Pp. 383- 427.
- Wikipedia (2015). *Labeo*. Retrieved from http://en.wikipedia.org/wiki/labeo.
- Yilmaz, S., Yazicioğlu, O., Erbaşaran, M., Esen, S., Nengin, M., & Polat, N., (2012). Length-weight relationship and relative condition factor of white bream, *Bliccabjoerkna* (L., 1758). *Journal of Black Sea/Mediterranean Environment*, 18(3), 380-387.
- Zhou, S., Smith, A. D., Punt, A. E., Richardson, A. J., Gibbs, M., Fulton, E. A., Pascoe, S., Bulman, C., Bayliss, P., & Sainsbury, K. (2010). Ecosystem-based fisheries management requires a change to the selective fishing philosophy. *Proceedings of the National Academy of Sciences*, 107(21), 9485-9489.