ISSN: 2536-7099
Model: Open Access/Peer Reviewed
DOI: 10.31248/JASVM
Start Year: 2016
Email: jasvm@integrityresjournals.org
https://doi.org/10.31248/JASVM2025.581 | Article Number: C8BDAFA910 | Vol.10 (4) - August 2025
Received Date: 28 June 2025 | Accepted Date: 30 August 2025 | Published Date: 30 August 2025
Authors: Sharmin Khatun* , Roknuzzaman Khan , Akib Zabed , Khairul Islam , Abdul Masum and K. B. M. Saiful Islam
Keywords: E.coli, Isolation, Antibiotic sensitivity, Salmonella spp.
Escherichia coli and Salmonella spp. are involved in a variety of pathogenic processes in domestic animals and humans. The study aimed to isolate and identify Escherichia coli (E. coli) and Salmonella spp. bacteria, and ascertain the specific antibiotic resistance percentages. A total of 40 samples of duck liver and intestinal contents were collected and selected from different villages in Savar Upazila and tested for E. coli and Salmonella spp., with the isolates subjected to antibiotic sensitivity tests. Cultural characteristics, biochemical testing, and Gram's staining were used to isolate and identify bacterial genera/species. Each bacterium has a different prevalence rate. The highest prevalence rate was found in E. coli (52.5%), followed by Salmonella spp. (37.5%). Antibiotic sensitivity test by disc diffusion method or Kirby-Bauer test was performed against the five most commonly used antibiotics. Ciprofloxacin was the most sensitive to E. coli isolates (95.2 %), followed by gentamycin (80.9%), while amoxicillin (90.5%), followed by tetracycline and ampicillin (80.95%), were the most resistant. Salmonella spp. isolates were found to be the most susceptible to Ciprofloxacin (100%), followed by Gentamycin (86.67%). The highest resistant pattern of Salmonella spp. was shown against amoxicillin (100%), followed by ampicillin (80%) and tetracycline (60%), with an intermediate resistance 40%. According to the findings of this study, duck contains a resistance profile to E. coli and Salmonella spp. pathogens on both the duck liver and intestinal contents. Salmonella spp and the resistance profile of E. coli are dangerous bacteria that can spread to people by contact with them or through the food chain, raising major public health problems.
| Adzitey, F., Ali, G. R. R., Huda, N., & Ting, S. L. (2013). Antibiotic resistance and plasmid profile of Escherichia coli isolated from ducks in Penang, Malaysia. International Food Research Journal, 20(3), 1473-1478. | ||||
| Agbaje, M., Begum, R. H., Oyekunle, M. A., Ojo, O. E., & Adenubi, O. T. (2011). Evolution of Salmonella nomenclature: a critical note. Folia Microbiologica, 56(6), 497-503. https://doi.org/10.1007/s12223-011-0075-4 |
||||
| Bell, C., & Kyriakides, A. (2002). Salmonella. In Foodborne pathogens. Hazards, risk analysis and control. CRC Press/Woodhead Publishing Limited, Cambridge, UK. Pp. 307-335. https://doi.org/10.1201/9781439832837.ch11 |
||||
| Britannica Online Encyclopaedia (June 2015). Facts about E. coli: dimensions, as discussed in bacteria: Diversity of structure of bacteria. | ||||
| Buncic, S., Nychas, G. J., Lee, M. R., Koutsoumanis, K., Hébraud, M., Desvaux, M., ... & Antic, D. (2014). Microbial pathogen control in the beef chain: recent research advances. Meat Science, 97(3), 288-297. https://doi.org/10.1016/j.meatsci.2013.04.040 |
||||
| Burrows, W., & Freeman B. A. (1985). Burrows Textbook of Microbiology. W.B. Saunders Company, 1038. | ||||
| Buxton, A., & Fraser, G. (1977). Animal Microbiology. Vol. 1. Blackwell Scientific Publications, Oxford, London, Edinburgh, Melbourne. Pp. 400-480. | ||||
| Cha, S. Y., Kang, M., Yoon, R. H., Park, C. K., Moon, O. K., & Jang, H. K. (2013). Prevalence and antimicrobial susceptibility of Salmonella isolates in Pekin ducks from South Korea. Comparative Immunology, Microbiology and Infectious Diseases, 36(5), 473-479. https://doi.org/10.1016/j.cimid.2013.03.004 |
||||
| Cheesbrough, M. (2006). District laboratory practice in tropical countries. Cambridge University Press. p. 62. https://doi.org/10.1017/CBO9780511543470 |
||||
| Chen, Z., Bai, J., Wang, S., Zhang, X., Zhan, Z., Shen, H., Zhang, H., Wen, J., Gao, Y., Liao, M., & Zhang, J. (2020). Prevalence, antimicrobial resistance, virulence genes and genetic diversity of Salmonella isolated from retail duck meat in southern China. Microorganisms, 8(3), 444. https://doi.org/10.3390/microorganisms8030444 |
||||
| Clinical and Laboratory Standard Institute (CLSI) (2020). Performance Standards for Anti-Microbial Susceptibility Testing. 30th Edition, M100. | ||||
| Cowan, S. T. (1985). Cowan and steel's manual for identification of bacteria. 2nd edition. Cambridge University Press, Cambridge, London. pp. 96-98. | ||||
| Darwish, W. S., Eldin, W. F. S., & Eldesoky, K. I. (2015). Prevalence, molecular characterisation and antibiotic susceptibility of E. coli isolated from duck meat and giblets. Journal of Food Safety, 35(3), 410-415. https://doi.org/10.1111/jfs.12189 |
||||
| Department of Livestock Services (DLS), 1st 2021: Annual report of Department of Livestock Services, Khamarbari Road, Farmgate, Dhaka. | ||||
| Dey, R. K., Khan, M. S. R., Nazir, K. H. M. N. H., Islam, M. A., & Belal, S. M. S. H. (2016). Epidemiological investigation on duck Salmonellosis in some selected areas of Bangladesh. Bangladesh Journal of Veterinary Medicine, 14(2), 149-160. https://doi.org/10.3329/bjvm.v14i2.31385 |
||||
| Eid, H. M., Algammal, A. M., Elfeil, W. K., Youssef, F. M., Harb, S. M., & Abd-Allah, E. M. (2019). Prevalence, molecular typing, and antimicrobial resistance of bacterial pathogens isolated from ducks. Veterinary World, 12(5), 677. https://doi.org/10.14202/vetworld.2019.677-683 |
||||
| James, C., Dixon, R., Talbot, L., James, S. J., Williams, N., & Onarinde, B. A. (2021). Assessing the impact of heat treatment of food on antimicrobial resistance genes and their potential uptake by other bacteria-a critical review. Antibiotics, 10(12), 1440. https://doi.org/10.3390/antibiotics10121440 |
||||
| Khoo, L. L., Hasnah, Y., Rosnah, Y., Saiful, N., Maswati, M. A., & Ramlan, M. (2010). The prevalence of avian pathogenic Escherichia coli (APEC) in peninsular Malaysia. Malays. Malaysian Journal of Veterinary Research, 1(1), 27-31. | ||||
| Kim, H., Lee, J., Jang, Y., Chang, B., Kim, A., & Choe, N. (2016). Prevalence and antimicrobial resistance of Salmonella spp. and Escherichia coli isolated from ducks in Korea. Korean Journal of Veterinary Research, 56(2), 91-95. https://doi.org/10.14405/kjvr.2016.56.2.91 |
||||
| Lowenfels, A. (2013). Is early surgery better for acute cholecystitis. Medscape Medical News 813363 | ||||
| Lutful Kabir, S. M. (2010). Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. International Journal of Environmental Research and Public Health, 7(1), 89-114. https://doi.org/10.3390/ijerph7010089 |
||||
| Majumder, S., Akter, M. M., Islam, M. M., Hussain, K., Das, S., Hasan, I., Nazir, K. H. M. N. H., & Rahman, M. (2017). Prevalence, isolation and detection of virulent gene in Escherichia coli from duck. British Journal of Medicine & Medical Research, 20(2), 1-8. https://doi.org/10.9734/BJMMR/2017/32003 |
||||
| Merchant, I. A., & Packer, R. A. (1967). Veterinary Bacteriology and Virology. 7th edition. Lowa State University Press, Ames. Lowa USA. Pp. 286- 306. | ||||
| Rahman, M. M., Rahman, M. M., Meher, M. M., Khan, M. S. I., & Anower, A. M. (2016). Isolation and antibiogram of Salmonella spp. from duck and pigeon in Dinajpur, Bangladesh. Journal of Advanced Veterinary and Animal Research, 3(4), 386-391. https://doi.org/10.5455/javar.2016.c177 |
||||
| Savkovic, S. D., Villanueva, J., Turner, J. R., Matkowskyj, K. A., & Hecht, G. (2005). Mouse model of enteropathogenic Escherichia coli infection. Infection and immunity, 73(2), 1161-1170. https://doi.org/10.1128/IAI.73.2.1161-1170.2005 |
||||
| Tenaillon, O., Skurnik, D., Picard, B., & Denamur, E. (2010). The population genetics of commensal Escherichia coli. Nature Reviews Microbiology, 8(3), 207-217. https://doi.org/10.1038/nrmicro2298 |
||||
| Tran, S. L., Billoud, L., Lewis, S. B., Phillips, A. D., & Schüller, S. (2014). Shiga toxin production and translocation during microaerobic human colonic infection with S higa toxinâproducing E. coli O157: H7 and O104: H4. Cellular microbiology, 16(8), 1255-1266. https://doi.org/10.1111/cmi.12281 |
||||
| World Health Organisation (WHO) (Nov., 2004). Water, Sanitation and hygiene links to health. Retrieved from https://iris.who.int/bitstream/handle/10665/69489/factsfigures_2004_eng.pdf. | ||||
| Yang, X., He, A., Badoni, M., Tran, F., & Wang, H. (2017). Mapping sources of contamination of Escherichia coli on beef in the fabrication facility of a commercial beef packing plant. Food Control, 75, 153-159. https://doi.org/10.1016/j.foodcont.2016.12.004 |
||||